
Quantitative Drama Analytics
Part 2: lab session

January 7, 2020

Your setup

• https://quadrama.github.io/rstudio
Virtuelle Maschine, die bei Microsoft Azure läuft

• Logins:
capulet romeo juliet montague balthasar
peter tybalt mercutio ophelia hamlet
horatio francisco laertes solanio arragon
nerissa lorenzo antonio bianca katherine
oliver corin dennis celia phoebe
lysander helena hermia oberon theseus
volumnia brutus virgilia valeria sicinius

https://quadrama.github.io/rstudio

What you really need to know about R

R Basics

• R is a programming language
• Mostly used for statistical data analysis (“data science”)
• First version: 1993, current stable release: 3.6
• Website
• Open source

• Three important concepts we need to talk about
• Objects/Types
• Variables
• Functions

https://www.r-project.org/

R Basics
Objects and Types

• Objects live in the computer memory (or on disk)
• Objects represent the things we want to analyse (e.g., dramatic texts,

words, or numbers)
• An object has one or more types

• The type of an object determines what we can do with it
• E.g., a knife allows other operations than a fork

• Types: Numbers, character sequences (‘strings’), lists, tables, …
• Numbers allow arithmetic operations

• E.g., summation: sum(3,5) (evaluates to 8, equivalent to 3+5)
• Character sequences allow character-based operations

• E.g., conversion to lower case: tolower("ABC") (evaluates to
"abc")

• “evalutes to”: result of the operation/function

R Basics
Objects and Types

• Objects live in the computer memory (or on disk)
• Objects represent the things we want to analyse (e.g., dramatic texts,

words, or numbers)
• An object has one or more types
• The type of an object determines what we can do with it

• E.g., a knife allows other operations than a fork

• Types: Numbers, character sequences (‘strings’), lists, tables, …
• Numbers allow arithmetic operations

• E.g., summation: sum(3,5) (evaluates to 8, equivalent to 3+5)
• Character sequences allow character-based operations

• E.g., conversion to lower case: tolower("ABC") (evaluates to
"abc")

• “evalutes to”: result of the operation/function

R Basics
Objects and Types

• Objects live in the computer memory (or on disk)
• Objects represent the things we want to analyse (e.g., dramatic texts,

words, or numbers)
• An object has one or more types
• The type of an object determines what we can do with it

• E.g., a knife allows other operations than a fork
• Types: Numbers, character sequences (‘strings’), lists, tables, …

• Numbers allow arithmetic operations
• E.g., summation: sum(3,5) (evaluates to 8, equivalent to 3+5)

• Character sequences allow character-based operations
• E.g., conversion to lower case: tolower("ABC") (evaluates to

"abc")

• “evalutes to”: result of the operation/function

R Basics
Objects and Types

• Objects live in the computer memory (or on disk)
• Objects represent the things we want to analyse (e.g., dramatic texts,

words, or numbers)
• An object has one or more types
• The type of an object determines what we can do with it

• E.g., a knife allows other operations than a fork
• Types: Numbers, character sequences (‘strings’), lists, tables, …

• Numbers allow arithmetic operations
• E.g., summation: sum(3,5) (evaluates to 8, equivalent to 3+5)

• Character sequences allow character-based operations
• E.g., conversion to lower case: tolower("ABC") (evaluates to

"abc")
• “evalutes to”: result of the operation/function

R Basics
Objects and Types

Type Example Description

Numeric 5 A numeric value
Character "Heidelberg" A sequence of characters

(note the double quotes!)
Logical TRUE/FALSE A truth value
Vector c(5,4,1) Sequence of objects of the same type
List list(5,"Hd",TRUE) Sequence of objects
Matrix Table of objects of the same type
Data frame Table of objects

R Basics
Objects and Types

In R, everything is a vector!

• Entering 5 creates a numeric vector of length 1
• Entering "Bla" creates a character vector of length 1

(In this way, R is different from other programming languages)

5
Creates a vector consisting of the numbers 1 to 50
1:50

R Basics
Variables

• We usually do not interact with the objects directly
• Because they are not known in advance (but loaded from files)

• Variables
• A way to name objects
• Used as a placeholder for objects
• The actual operation takes place on the objects (R takes care of this)

• Creating a variable a: a <- 3 (think of this as an arrow)

> a <- 3
> b <- 5
> a + b
[1] 8
>

R Basics
Functions

• “Mini programs”: A collection of instructions that you can use as a
single instruction

• Input: Functions take arguments as input
• Output: Functions return an object (that stores the result of the

instructions)

• Functions have a name (typically lower case) and can be reognized by
the round parentheses
function(argument1, argument2, argument3, ...)

• The return value of a function can be stored in a variable
variable <- function(arg1, arg2, ...)

• Some functions not only return a value, but also do something (e.g.,
display a plot)

• Pipeline: Multiple functions operating in succession

R Basics
Functions

• “Mini programs”: A collection of instructions that you can use as a
single instruction

• Input: Functions take arguments as input
• Output: Functions return an object (that stores the result of the

instructions)
• Functions have a name (typically lower case) and can be reognized by

the round parentheses
function(argument1, argument2, argument3, ...)

• The return value of a function can be stored in a variable
variable <- function(arg1, arg2, ...)

• Some functions not only return a value, but also do something (e.g.,
display a plot)

• Pipeline: Multiple functions operating in succession

R Basics
Functions

• “Mini programs”: A collection of instructions that you can use as a
single instruction

• Input: Functions take arguments as input
• Output: Functions return an object (that stores the result of the

instructions)
• Functions have a name (typically lower case) and can be reognized by

the round parentheses
function(argument1, argument2, argument3, ...)

• The return value of a function can be stored in a variable
variable <- function(arg1, arg2, ...)

• Some functions not only return a value, but also do something (e.g.,
display a plot)

• Pipeline: Multiple functions operating in succession

R Basics
Functions

sum(5,1) # 5 + 1 is only an abbreviation
s <- sum(5,1) # stores the result in a

variable, no output
s # prints the value of the variable
s <- 7 # overwrites the previous value of

the variable
s <- sum(s,3) # overwrites the value of the

variable

What is the value of s now?

RStudio

RStudio
• An integrated development environment (IDE) for R
• Capable workbench for data analysis

{height=0.3⧵textheight}

RStudio
Four Panes

• Console: Where you enter R code and get the result immediately
• Environment: Shows the objects currently in memory
• Plots: Shows plots
• Editor/Code: Allows editing R code and inspecting tables

We will focus on the console and plot area

DramaAnalysis

Outline

• Introduction/Installation and Overview
• Three areas for you to play with

1. Global character statistics
2. Word fields
3. Copresence and network analysis

Introduction

• R Package: A collection of functions and/or data sets
• Function: Mini program
• DramaAnalysis: Functions for drama analysis (surprise!)

• Today: Third iteration, extensive rewrite
• Philosophy: Construction kit

Installation

Installation
Code

install.packages("DramaAnalysis")
library(DramaAnalysis) # no quotes

additional package
library(magrittr)

Figure 1: René Magritte: The Treachery of Images

Installation
Code

install.packages("DramaAnalysis")
library(DramaAnalysis) # no quotes

additional package
library(magrittr)

Figure 1: René Magritte: The Treachery of Images

Installation
Data

• Dramatic texts are initially stored as TEI/XML files
• Language processing (e.g., identification of parts of speech) takes

place in a UIMA pipeline
• https://github.com/quadrama/DramaNLP

• Output of the pipeline: Several CSV files for each play (meta data,
character data, …)

• CSV files analysed in R

Two corpora today:

installData("qd") # German literary canon
or
installData("shakedracor") # English Shakespeare plays

https://github.com/quadrama/DramaNLP

Installation
Data

• Dramatic texts are initially stored as TEI/XML files
• Language processing (e.g., identification of parts of speech) takes

place in a UIMA pipeline
• https://github.com/quadrama/DramaNLP

• Output of the pipeline: Several CSV files for each play (meta data,
character data, …)

• CSV files analysed in R

Two corpora today:

installData("qd") # German literary canon
or
installData("shakedracor") # English Shakespeare plays

https://github.com/quadrama/DramaNLP

Installation
Data

The function installData()

• Clones a git repository from github.com/quadrama into a local
directory

• Allows easy update of data files
• German literary canon (qd)

• TextGrid → GerDraCor → QuaDramA
• English Shakespeare plays (shakedracor)

• Folger → DraCor → QuaDramA
• Two demo plays included in the package

• Including manual coreference annotation
• Lessing’s Emilia Galotti and Miss Sara Sampson (German)

Inspecting data
Collect all play ids into a vector
loadAllInstalledIds() %>%

Extract metadata for each play,
put it into a table
loadMeta() %>%
Have RStudio display a nice table
View()

Figure 2: Metadata table in RStudio

Inspecting data
Collect all play ids into a vector
loadAllInstalledIds() %>%

Extract metadata for each play,
put it into a table
loadMeta() %>%
Have RStudio display a nice table
View()

Figure 2: Metadata table in RStudio

Loading a play

• We first have to load plays into the environment
• Each play has an associated id
• Select one and create a variable to store the id (less typing in the

future)

General form: collection colon play
(allows comparison across collections)
myId <- "shakedracor:Rom"

play <- loadDrama(myId)

Loading a play

• We first have to load plays into the environment
• Each play has an associated id
• Select one and create a variable to store the id (less typing in the

future)

General form: collection colon play
(allows comparison across collections)
myId <- "shakedracor:Rom"

play <- loadDrama(myId)

Online help

• Each function is documented
• Entering question mark followed by the function name opens the help

view
• ?loadDrama

• Documentation
• What does the function do?
• What arguments does it expect, which default values are defined?
• What does it return?
• Usage example

Package documentation: https://quadrama.github.io/DramaAnalysis/3.0.0

Tutorial: https://quadrama.github.io/DramaAnalysis/tutorial/3/index.html

https://quadrama.github.io/DramaAnalysis/3.0.0
https://quadrama.github.io/DramaAnalysis/tutorial/3/index.html

Online help

• Each function is documented
• Entering question mark followed by the function name opens the help

view
• ?loadDrama

• Documentation
• What does the function do?
• What arguments does it expect, which default values are defined?
• What does it return?
• Usage example

Package documentation: https://quadrama.github.io/DramaAnalysis/3.0.0

Tutorial: https://quadrama.github.io/DramaAnalysis/tutorial/3/index.html

https://quadrama.github.io/DramaAnalysis/3.0.0
https://quadrama.github.io/DramaAnalysis/tutorial/3/index.html

What can we do?

Function overview

QDDrama

loadDrama()

loadFields()

characterStatistics()

dictionaryStatistics()

utteranceStatistics()

hamming()

scenicDifference()

QDCharacterStatistics1

QDDictionaryStatistics1

QDUtteranceStatistics1

barplot()

plot()

plotSpiderWebs()as.matrix()

dictionaryStatisticsSingle()enrichDictionary()

configuration()

as.matrix()

frequencytable()keyness()

filterByDictionary()

correlationAnalysis()

presence()

list

QDConfiguration1

matrix

matrix

list

data.frame

list

list

matrix

basic character plot

spider web

ĘęĞđĔ

ĎČėĆĕč

1: QDHasCharacter

filterCharacters() characterNames()

Legend
DramaAnalysis 3.0

function()

class

ĊĝęĊėēĆđ ĈĔĒĕĔēĊēę

plot type

Figure 3: Possible workflows in DramaAnalysis

Three parts

1. Global character/utterance statistics
2. Word fields
3. Character relations

1. Global character statistics

Global character statistics

Two functions:

• characterStatistics(): Characters in focus
• utteranceStatistics(): Utterances in focus

Function characterStatistics

cs <- characterStatistics(play)

Returns a table (in R: data.frame) with

• corpus: The collection id
• drama: The play id
• character: the character id
• tokens: Number of tokens (for this character)
• types: Number of different tokens (for this character)
• utterances: Number of utterances (for this character)
• utteranceLengthMean: Mean utterance length
• utteranceLengthSd: Utterance length standard deviation
• firstBegin: Starting position of the first utterance
• lastEnd: End position of the last utterance

(The function View() can be used to get browsable table in RStudio.)

Function characterStatistics I
Plotting

load a play
play <- loadDrama("shakedracor:Rom")

call the function
characterStatistics(play) %>%

replace character ids by character names
characterNames(play) %>%
plot them stacked
barplot()

Function characterStatistics II
Plotting

Rom

0
10

00
0

20
00

0

Romeo

Juliet
Friar Lawrence

Nurse
Capulet

Function utteranceStatistics

us <- utteranceStatistics(play)

Returns a table with one row for each utterance

• corpus: The collection id
• drama: The play id
• character: the character id
• utteranceBegin: Character position of the first character
• utteranceLength: Portion of this utterance with the total play

(The function View() can be used to get browsable table in RStudio.)

Function utteranceStatistics I
Plotting

play <- loadDrama("shakedracor:Rom")

get utterance statistics
us <- utteranceStatistics(play) %>%

remove uninteresting characters
filterCharacters(play) %>%
replace ids by names
characterNames(play)

plot boundaries
par(mar=c(2,7,1,1))
plot the utterances
stripchart(utteranceLength ~ character,

data = us,
las=1,
pch=20,
method="jitter")

Function utteranceStatistics II
Plotting

0.000 0.005 0.010 0.015

Benvolio

Capulet

Friar Lawrence

Juliet

Lady Capulet

Mercutio

Nurse

Paris

Escalus

Romeo

2. Word fields

Word fields

Word fields: Semantically related words

• Represented as a vector of strings in R
• E.g., love, heart is a word field related to love

Work steps

1. Define a word field: base R, loadFields()
2. Apply it to text(s): dictionaryStatistics()

Word Fields
Define a word field

Definition of a word field manually on the fly

fields <- list(
words related to family
Family=c("marriage", "parents", "ancestors", ...),
words related to love
Love=c("love", "heart", "kiss", ...))

Creates a named list of lists

Word Fields
Define a word field: Function ‘loadFields()‘

• Function to load word fields from URLs or files
• Load pre-defined (German) word lists

fields <- loadFields(fieldnames=c("Liebe", "Familie"))

Returns a named list of lists

Word Fields
Other sources

• Defining word fields manually is not trivial (historic language(s), bias,
…)

• Existing dictionaries can be used as sources
• Enriching fields with distributionally similar words

Word Fields
Application: ‘dictionaryStatistics()‘

play <- loadDrama("shakedracor:Rom")
ds <- dictionaryStatistics(play, fields)

Returns a table with columns

• corpus, drama: See above
• character: The character id
• one column for each field

corpus drama character Family Love
1 shakedracor Rom Apothecary_Rom 0 0
2 shakedracor Rom Benvolio_Rom 0 9
3 shakedracor Rom CITIZENS.0.1_Rom 0 0

Word Fields
Application: ‘dictionaryStatistics()‘

play <- loadDrama("shakedracor:Rom")
ds <- dictionaryStatistics(play, fields)

Returns a table with columns

• corpus, drama: See above
• character: The character id
• one column for each field

corpus drama character Family Love
1 shakedracor Rom Apothecary_Rom 0 0
2 shakedracor Rom Benvolio_Rom 0 9
3 shakedracor Rom CITIZENS.0.1_Rom 0 0

Word Fields
Normalization

• Different characters have different portions of speech in the play
• Word fields may be differently large

• Normalization is important
• No one fits all mechanic
• It depends on the research question

Two parameters (both can be set to TRUE/FALSE)

• normalizeByCharacter
• normalizeByField

Normalized numbers tend to be very small, but that does not hinder their
meaningfulness

Word Fields
Normalization

• Different characters have different portions of speech in the play
• Word fields may be differently large
• Normalization is important

• No one fits all mechanic
• It depends on the research question

Two parameters (both can be set to TRUE/FALSE)

• normalizeByCharacter
• normalizeByField

Normalized numbers tend to be very small, but that does not hinder their
meaningfulness

Word Fields
Normalization

• Different characters have different portions of speech in the play
• Word fields may be differently large
• Normalization is important

• No one fits all mechanic
• It depends on the research question

Two parameters (both can be set to TRUE/FALSE)

• normalizeByCharacter
• normalizeByField

Normalized numbers tend to be very small, but that does not hinder their
meaningfulness

Word Fields
Normalization

• Different characters have different portions of speech in the play
• Word fields may be differently large
• Normalization is important

• No one fits all mechanic
• It depends on the research question

Two parameters (both can be set to TRUE/FALSE)

• normalizeByCharacter
• normalizeByField

Normalized numbers tend to be very small, but that does not hinder their
meaningfulness

Word Fields I
Plotting

ds <- dictionaryStatistics(play, fields) %>%
filterCharacters(play) %>%
characterNames(play)

dsm <- as.matrix(ds)

par(mar=c(10,2,1,1))
barplot(t(dsm),

beside=TRUE,
names.arg = ds$character,
legend.text = colnames(dsm),
las=2)

Word Fields II
Plotting

B
en

vo
lio

C
ap

ul
et

F
ria

r
La

w
re

nc
e

Ju
lie

t

La
dy

 C
ap

ul
et

M
er

cu
tio

N
ur

se

P
ar

is

E
sc

al
us

R
om

eo

Family
Love

0

10

20

30

40

50

60

3. Character Relations

Character Relations

• Configuration: A matrix showing who is on stage when

Functions

• configuration()
• presence()

Package igraph

Configuration
Function ‘configuration()‘

play <- loadDrama("shakedracor:Rom")
conf <- configuration(play)

Table with columns

• corpus, drama, character
• One column per segment, filled with the number of words spoken by

a character

Configuration I
Plotting

c <- configuration(play) %>%
filterCharacters(play, n=5) %>%
characterNames(play)

mat <- as.matrix(c)
par(mar=c(2,2,2,10))

barplot(mat,
legend.text = c$character)

Configuration II
Plotting

1 2 3 4 5

Friar Lawrence
Juliet
Nurse
Romeo
Capulet

0
10

00
20

00
30

00
40

00
50

00
60

00

Character Network
Step 1: Create an adjacency matrix

c <- configuration(play,
onlyPresence = TRUE,
segment = "Scene") %>%

filterCharacters(play) %>%
characterNames(play)

mat <- as.matrix(c)

multiply the matrix with its inverse
this creates the adjacency matrix
adjMatrix <- mat %*% t(mat)

add character names
rownames(adjMatrix) <- c$character
colnames(adjMatrix) <- c$character

Character Network
Step 2: Create graph and plot it

Using the library igraph:
library(igraph)
convert the adjacency matrix to a graph object
g <- graph_from_adjacency_matrix(copresence,

weighted=TRUE,
mode="undirected",
diag=FALSE)

plot it
plot.igraph(g,

layout=layout_in_circle,
main="Copresence Network: Romeo & Juliet",
edge.width=E(g)$weight)

Character Presence I

This (currently) only works for manually annotated plays
data(rksp.0) # load Emilia Galotti

calculate presence
pres <- presence(rksp.0) %>%

characterNames(rksp.0)

plot points
plot(x=pres$active/pres$scenes,

y=pres$passive/pres$scenes,
xlim=c(0,1),
ylim=c(0,1))

add labels
text(x=pres$actives/pres$scenes,

y=pres$passives/pres$scenes,
labels=substr(pres$character,0,20),
pos=3,
cex=0.8)

add lines
lines(x=seq(0,0.5,0.1),seq(0,0.5,0.1), lty=3)
lines(x=1:0,y=0:1, lty=2)

Character Presence II

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pres$active/pres$scenes

pr
es

$p
as

si
ve

/p
re

s$
sc

en
es

Angelo

Appiani

Battista

Camillo Rota
Claudia

Conti

Der Kammerdiener

Der Prinz

Emilia

Marinelli

Odoardo Galotti

Orsina

Pirro

Lab session

Lab session

… and now, it’s your turn!

Pick one or more plays, and do one of the analyses, or follow your own
ideas!

(don’t be afraid, you can’t break anything)

Getting help
• question mark plus function name: ?presence
• Package documentation:

https://quadrama.github.io/DramaAnalysis/3.0.0/
• Tutorial: https://quadrama.github.io/DramaAnalysis/tutorial/3/
• … and we’re here for you too!

https://quadrama.github.io/DramaAnalysis/3.0.0/
https://quadrama.github.io/DramaAnalysis/tutorial/3/

	What you really need to know about R
	RStudio

	DramaAnalysis
	Installation
	What can we do?
	1. Global character statistics
	2. Word fields
	3. Character Relations
	Lab session

